Report presentation: National Industrial Sector Decarbonization

Extent of Carbon Capture Opportunities and Network Optimization across the United States

Presenters: Erin Middleton & Marcos Miranda

Research and report was funded by the Center for Applied Environmental Law and Policy (CAELP)

<u>Motivation</u>

What might national decarbonization of the *INDUSTRIAL SECTOR* via CCS look like?

Which sectors should be considered?

Is there adequate storage, and where is it located?

What is the pipeline footprint?

What communities are impacted?

Company Software

Description

• **Software:** Most advanced screening-level CO₂ capture database.

Motivation

- Rapidly characterize individual CO₂ sources.
- Directory of CO₂ opportunities.

CO₂NCORD

The CO₂ National Capture Opportunities and Readiness Database

Capturable Emissions (MtCO2)

- 0.00 0.50
- 0.50 0.85
- 0.85 1.50
- 1.50 3.00
- 3.00+

Industry Category

- Aluminum
- Ammonia
- Cement
- Chemicals

Ethanol

Facilities

Glass

0

0

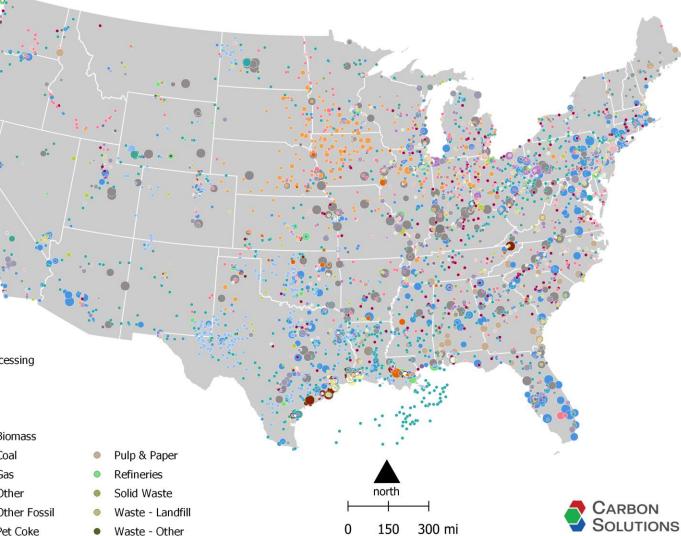
0

0

Food & Ag

Hvdroaen

Iron & Steel


Lime & Gypsum

Manufacturing

Metals - Other

Minerals - Other

- Chemicals Other
- MiningNatural Gas Processing
- Oil & Gas
- Other Other
 - Petrochemicals
 - Power Plants Biomass
- Power Plants Coal
- Power Plants Gas
- Power Plants Other
- Power Plants Other Fossil
- Power Plants Pet Coke

More information:

Sale, Kat: CO₂NCORD: Finding New Opportunities for Carbon Capture with CO₂NCORD

COMPANY SOFTWARE CO₂NCORD

Description

• SOFTWARE: Most advanced screeninglevel CO₂ capture database.

Motivation

CARBON SOLUTIONS

- Rapidly characterize individual CO_2 sources.
- Directory of CO₂ opportunities.

CO₂NCORD

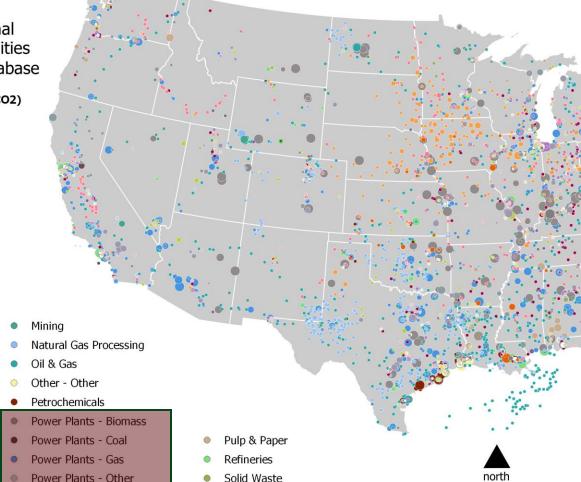
The CO₂ National Capture Opportunities and Readiness Database

Capturable Emissions (MtCO2)

- 0.00 0.50
- 0.50 0.85
- 0.85 1.50
- 1.50 3.00
- 3.00+

Industry Category

- Aluminum
- Ammonia
- 0 Cement


0

0

- Chemicals
- Chemicals Other
- Facilities Food & Ag 0

Ethanol

- Glass
- Hydrogen
- 0 Iron & Steel
- Lime & Gypsum 0
- Manufacturing
- Metals Other 0
- Minerals Other 0

0 Waste - Landfill

Waste - Other •

Exclude power sector

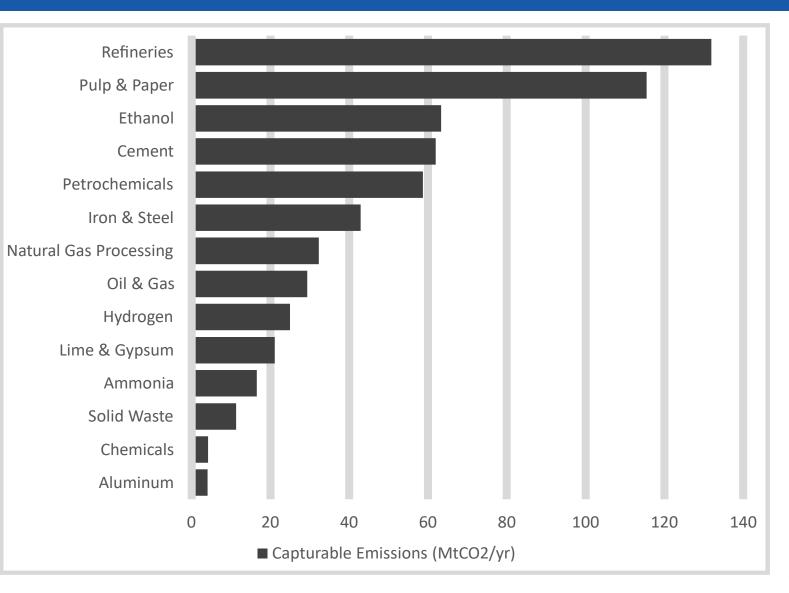
Power Plants - Other Fossil

Power Plants - Pet Coke

CARBON

150

300 mi

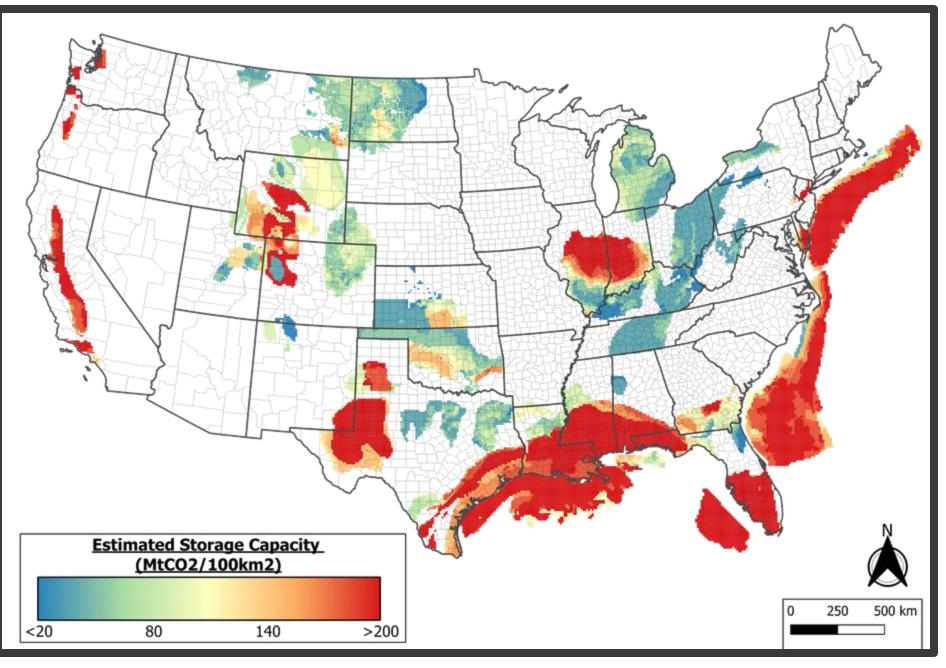

SOLUTIONS

Which sectors should be considered?

Considerations

- Eligible for 45Q
- Priorities
 - Sectors with large emissions, as a whole
 - Sectors with large emissions per facility

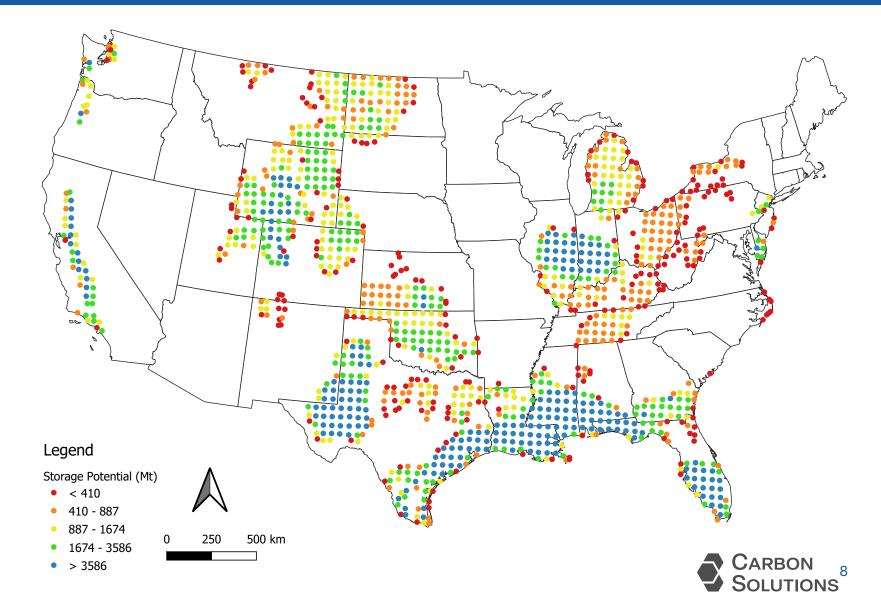
Total emissions for all sectors: 618 MtCO₂/yr


Description

• **SOFTWARE:** Most advanced screeninglevel **CO₂ storage** model & database.

Motivation

- Capture complex CO₂ storage with fast-running models.
- Rapidly characterize individual storage reservoirs.
- Regional/national assessment of CO₂ storage potential.



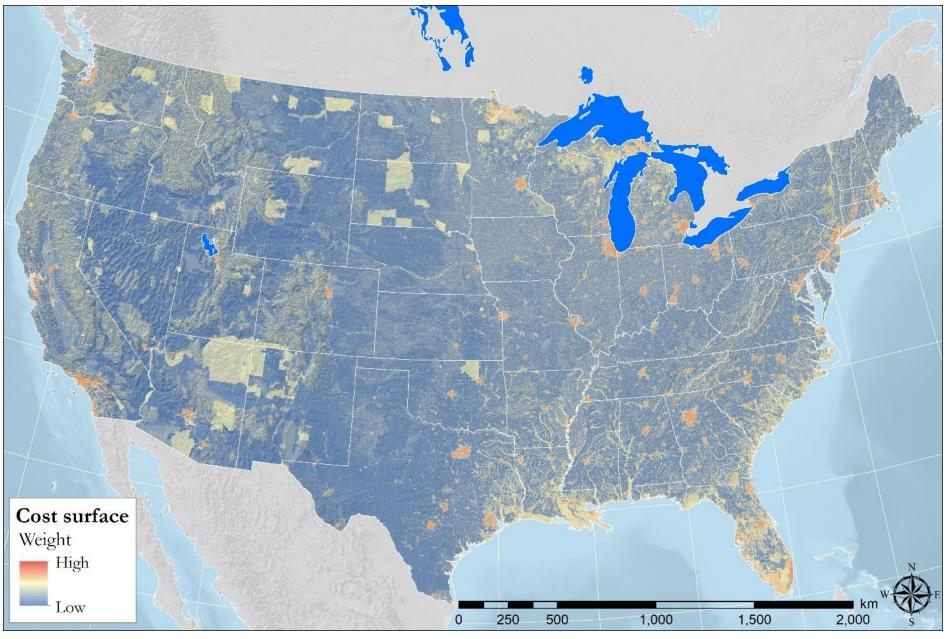
More information: Ogland-Hand, J. et al. How to Net-Zero America: Nationwide Cost and Capacity Estimates for Geologic CO₂ Storage.

Is there adequate storage, and where is it?

Considerations

- When there is stacked storage, selected lowest cost.
- Exclude offshore storage
- Aggregate to 50k

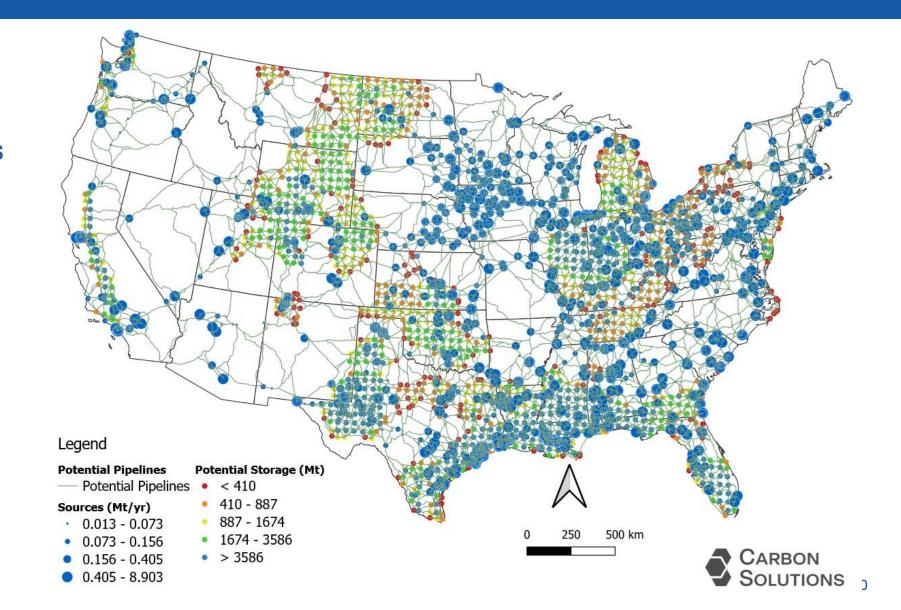
COMPANY SOFTWARE COSTMAPPRO

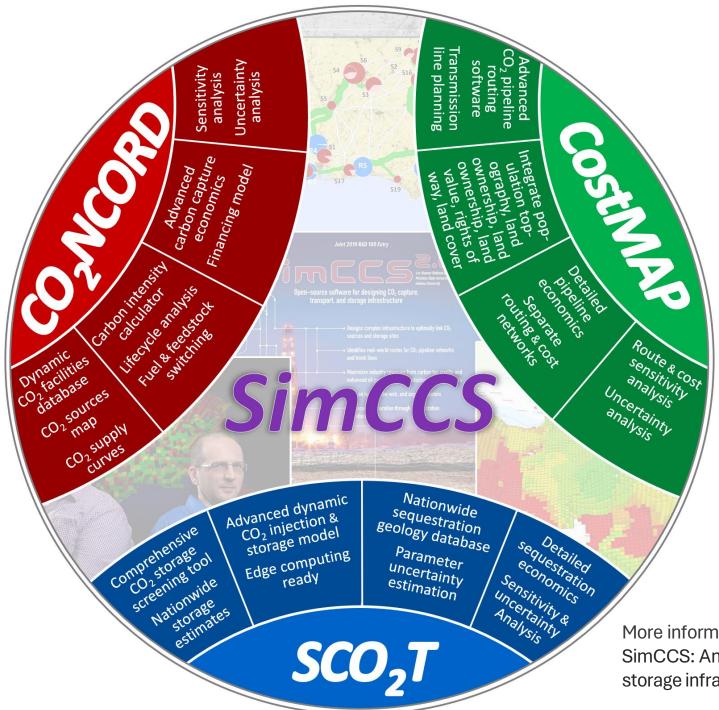

Description

 SOFTWARE: Most advanced screeninglevel CO₂ transportation & routing model (or any pipelines, transmission lines).

Motivation

- Identify corridors that balance connectivity, cost, environmental impact, community engagement, and landowners.
- Customer interaction.
- Identify multiple routes.


More information: Hoover, B., Yaw, S. & Middleton, R. S. CostMAP: an open-source software package for developing cost surfaces using a multi-scale search kernel. *International Journal of Geographical Information Science*, 34, 2019.


What is the pipeline footprint?

Considerations

- Link sources to storages
- Costs and routing changed based on:
 - Population density
 - Land Use
 - Federal Lands
 - Slope
 - Railway
 - Rivers
 - Roads
 - Transmission lines
 - Pipeline

SimCCSPRO Software

SimCCS^{PRO} (system analysis)

- Decision support across the CCS value chain.
- Leading sub-models for CO₂ capture, transport, & storage.

CO2NCORD (capture)

- Dynamic, customizable CO₂ capture database.
- 10,000+ sources.

CostMAP^{PRO} (transport)

• Advanced, multiscale, multi-attribute pipeline routing.

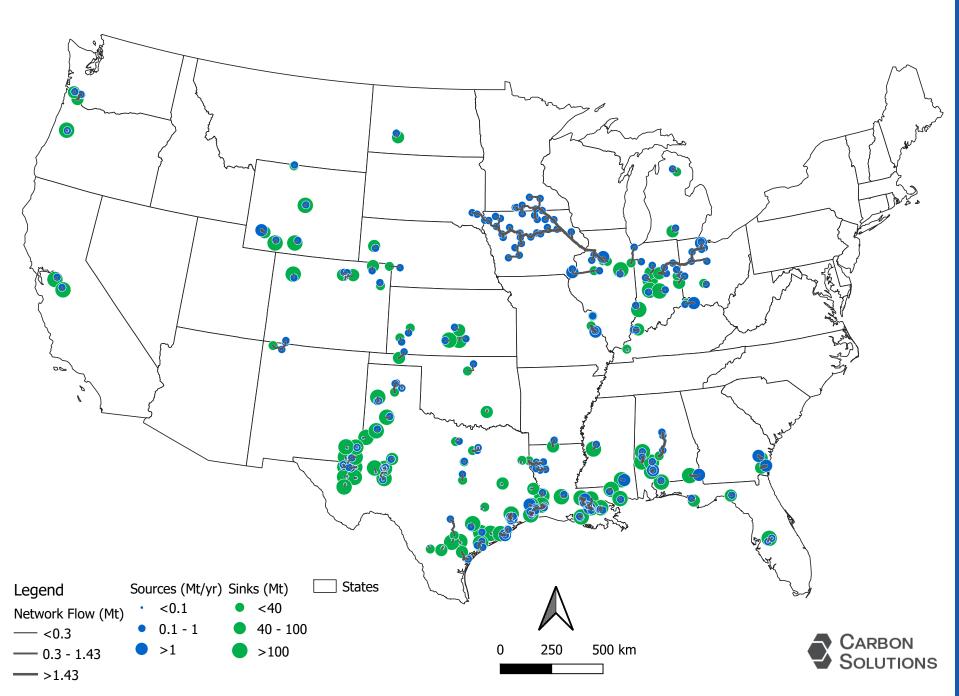
SCO₂T^{PRO} (storage)

- World's most advanced & accurate tool for dynamic CO_2 storage & costs.

More information: Middleton, R. S., Yaw, S., Hoover, B. & Ellett, K. M. SimCCS: An open-source tool for optimizing CO₂ capture, transport, and storage infrastructure. *Environmental Modeling and Software* **124**, (2020).

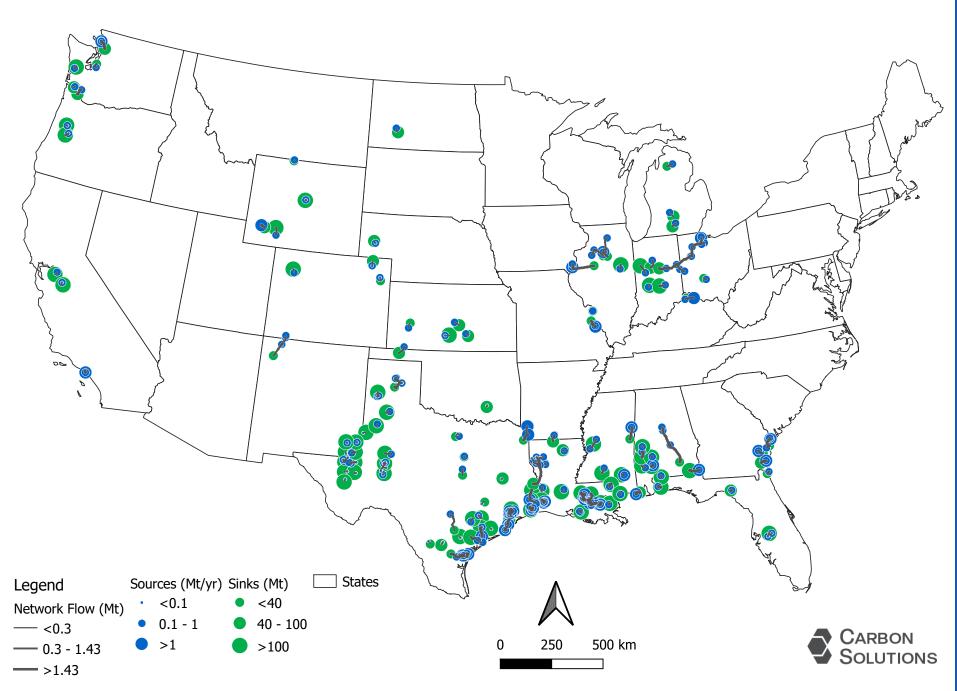
Results

12


Initial modeling scenarios

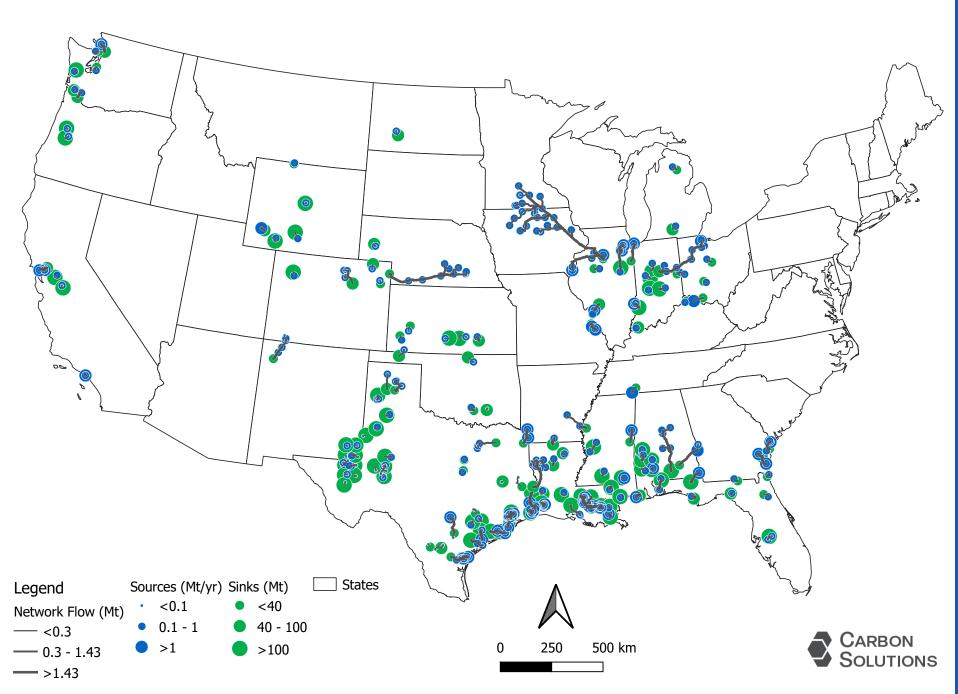
- Require a certain amount of CO_2 to be captured at intervals up to all CO_2 .
- How does the mix of industrial sectors change?
- What is the transportation network required?
- Where are geologic storage sites relative to industrial emissions?

Sectors	100 Mt	200 Mt	300 Mt	400 Mt	500 Mt	600 Mt	618 Mt
Refineries	5%	36%	66%	87%	95%	100%	100%
Pulp & Paper	20%	39%	52%	58%	75%	98%	100%
Ethanol	41%	23%	49%	79%	94%	99%	100%
Cement	0%	0%	7%	21%	66%	96%	100%
Petrochemicals	22%	78%	83%	93%	93%	100%	100%
Iron & Steel	0%	0%	0%	22%	62%	94%	100%
Natural Gas Processing	30%	38%	63%	79%	85%	97%	100%
Oil & Gas	7%	7%	22%	41%	53%	78%	100%
Hydrogen	0%	2%	47%	87%	95%	100%	100%
Lime & Gypsum	55%	52%	56%	57%	71%	96%	100%
Ammonia	41%	66%	70%	78%	92%	100%	100%
Solid Waste	0%	0%	0%	16%	33%	95%	100%
Chemicals	42%	61%	58%	64%	72%	94%	100%
Aluminum	0%	0%	18%	30%	53%	77%	100%
Total	16%	31%	48%	64%	81%	97%	100%
Total	16%	31%	48%	64 %	81%	97%	100


CARBON SOLUTIONS

Results: 100 Mt/yr

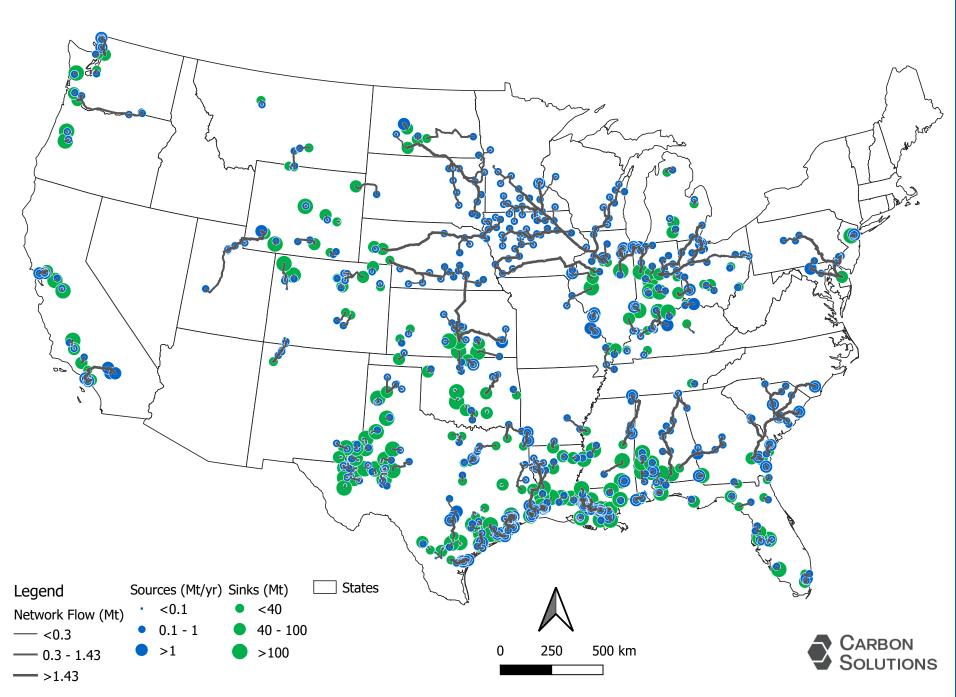
Annual Capture (MtCO ₂ /yr)	100
# Sources	300
# Sinks	116
Network Length (km)	6,529
Total Cost (\$/tCO2)	\$55.03
Source Cost (\$/tCO ₂)	\$38.38
Transport Cost (\$/tCO ₂)	\$9.88
Sink Cost (\$/tCO ₂)	\$6.77


Sectors	100 N	t	200 Mt	3	00 Mt	400 Mt	500 Mt	600 Mt	618 Mt
Refineries	5%		36%		66%	87%	95%	100%	100%
Pulp & Paper	20%		39%		52%	58%	75%	98%	100%
Ethanol	41%		23%		49%	79%	94%	99%	100%
Cement	0%		0%		7%	21%	66%	96%	100%
Petrochemicals	22%		78%		83%	93%	93%	100%	100%
Iron & Steel	0%		0%		0%	22%	62%	94%	100%
Natural Gas Processing	30%		38%		63%	79%	85%	97%	100%
Oil & Gas	7%		7%		22%	41%	53%	78%	100%
Hydrogen	0%		2%		47%	87%	95%	100%	100%
Lime & Gypsum	55%		52%		56%	57%	71%	96%	100%
Ammonia	41%		66%		70%	78%	92%	100%	100%
Solid Waste	0%		0%		0%	16%	33%	95%	100%
Chemicals	42%		61%		58%	64%	72%	94%	100%
Aluminum	0%		0%		18%	30%	53%	77%	100%
Total	16%		31%		48%	64%	81%	97%	100%

Results: 200 Mt/yr

Annual Capture (MtCO ₂ /yr)	200
# Sources	427
# Sinks	116
Network Length (km)	5,005
Total Cost (\$/tCO2)	\$65.53
Source Cost (\$/tCO ₂)	\$53.77
Transport Cost (\$/tCO ₂)	\$5.23
Sink Cost (\$/tCO ₂)	\$6.53

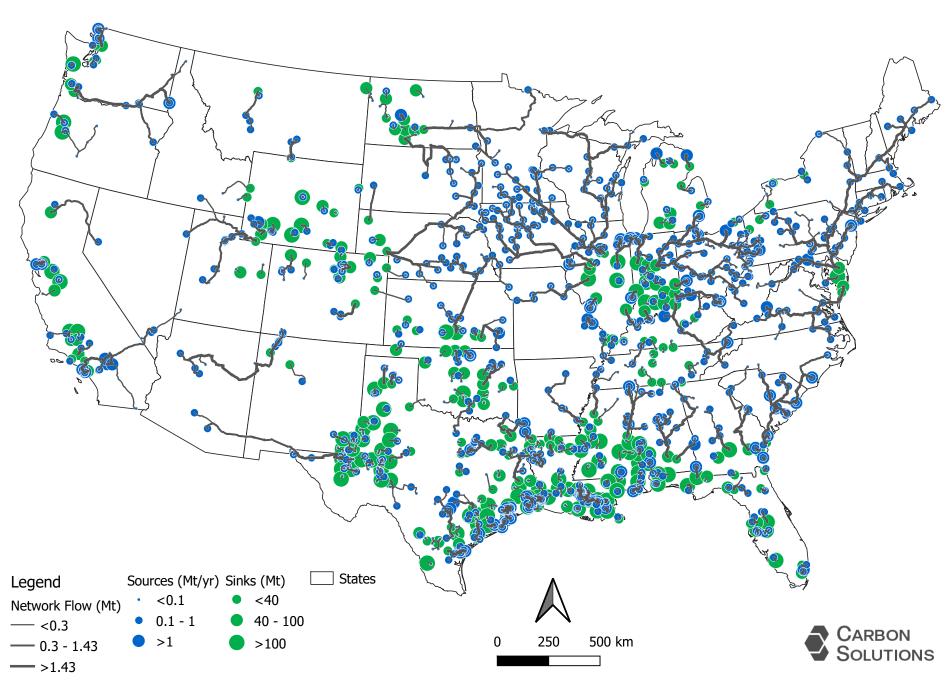
Sectors	100 Mt	200 N	t	300 Mt	4	00 Mt	500 Mt	600 Mt	618 Mt
Refineries	5%	36%		66%		87%	95%	100%	100%
Pulp & Paper	20%	39%		52%		58%	75%	98%	100%
Ethanol	41%	23%		49%		79%	94%	99%	100%
Cement	0%	0%		7%		21%	66%	96%	100%
Petrochemicals	22%	78%		83%		93%	93%	100%	100%
Iron & Steel	0%	0%		0%		22%	62%	94%	100%
Natural Gas Processing	30%	38%		63%		79%	85%	97%	100%
Oil & Gas	7%	7%		22%		41%	53%	78%	100%
Hydrogen	0%	2%		47%		87%	95%	100%	100%
Lime & Gypsum	55%	52%		56%		57%	71%	96%	100%
Ammonia	41%	66%		70%		78%	92%	100%	100%
Solid Waste	0%	0%		0%		16%	33%	95%	100%
Chemicals	42%	61%		58%		64%	72%	94%	100%
Aluminum	0%	0%		18%		30%	53%	77%	100%
Total	16%	31%		48%		64%	81%	97%	100%


Results: 300 Mt/yr

Annual Capture (MtCO ₂ /yr)	300
# Sources	670
# Sinks	136
Network Length (km)	9,235
Total Cost (\$/tCO2)	\$69.04
Source Cost (\$/tCO ₂)	\$55.89
Transport Cost (\$/tCO ₂)	\$6.47
Sink Cost (\$/tCO ₂)	\$6.67

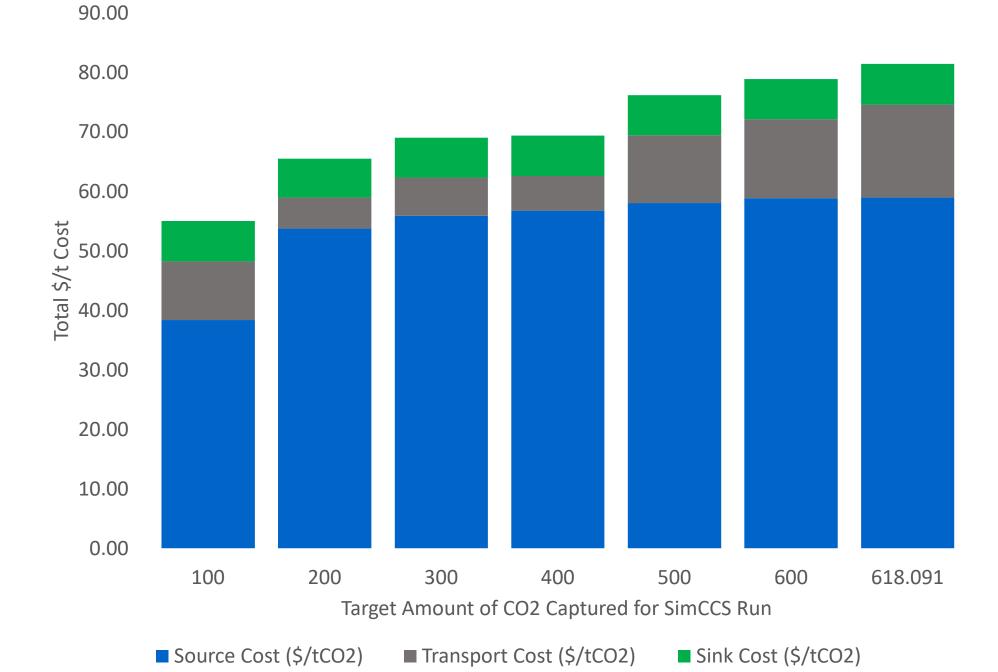
Sectors	100 Mt	200 Mt	300 N	lt	400 Mt	Ę	00 Mt	600 Mt	618 Mt
Refineries	5%	36%	66%		87%		95%	100%	100%
Pulp & Paper	20%	39%	52%		58%		75%	98%	100%
Ethanol	41%	23%	49%		79%		94%	99%	100%
Cement	0%	0%	7%		21%		66%	96%	100%
Petrochemicals	22%	78%	83%		93%		93%	100%	100%
Iron & Steel	0%	0%	0%		22%		62%	94%	100%
Natural Gas Processing	30%	38%	63%		79%		85%	97%	100%
Oil & Gas	7%	7%	22%		41%		53%	78%	100%
Hydrogen	0%	2%	47%		87%		95%	100%	100%
Lime & Gypsum	55%	52%	56%		57%		71%	96%	100%
Ammonia	41%	66%	70%		78%		92%	100%	100%
Solid Waste	0%	0%	0%		16%		33%	95%	100%
Chemicals	42%	61%	58%		64%		72%	94%	100%
Aluminum	0%	0%	18%		30%		53%	77%	100%
Total	16%	31%	48%		64%		81%	97 %	100%

Sectors	100 Mt	200 Mt	300 Mt	400 №	t	500 Mt	6	00 Mt	618 Mt
Refineries	5%	36%	66%	87%		95%		100%	100%
Pulp & Paper	20%	39%	52%	58%		75%		98%	100%
Ethanol	41%	23%	49%	79%		94%		99%	100%
Cement	0%	0%	7%	21%		66%		96%	100%
Petrochemicals	22%	78%	83%	93%		93%		100%	100%
Iron & Steel	0%	0%	0%	22%		62%		94%	100%
Natural Gas Processing	30%	38%	63%	79%		85%		97%	100%
Oil & Gas	7%	7%	22%	41%		53%		78%	100%
Hydrogen	0%	2%	47%	87%		95%		100%	100%
Lime & Gypsum	55%	52%	56%	57%		71%		96%	100%
Ammonia	41%	66%	70%	78%		92%		100%	100%
Solid Waste	0%	0%	0%	16%		33%		95%	100%
Chemicals	42%	61%	58%	64%		72%		94%	100%
Aluminum	0%	0%	18%	30%		53%		77%	100%
Total	16%	31%	48%	64%		81%		97%	100%



Results: 500 Mt/yr

Annual Capture (MtCO ₂ /yr)	500
# Sources	1296
# Sinks	209
Network Length (km)	26,846
Total Cost (\$/tCO2)	\$76.19
Source Cost (\$/tCO ₂)	\$58.06
Transport Cost (\$/tCO ₂)	\$11.40
Sink Cost (\$/tCO ₂)	\$6.74


Sectors	100 Mt	200 Mt	300 Mt	400 Mt	500 Mt	600 M t	618 Mt
Refineries	5%	36%	66%	87%	95%	100%	100%
Pulp & Paper	20%	39%	52%	58%	75%	98%	100%
Ethanol	41%	23%	49%	79%	94%	99%	100%
Cement	0%	0%	7%	21%	66%	96%	100%
Petrochemicals	22%	78%	83%	93%	93%	100%	100%
Iron & Steel	0%	0%	0%	22%	62%	94%	100%
Natural Gas Processing	30%	38%	63%	79%	85%	97%	100%
Oil & Gas	7%	7%	22%	41%	53%	78%	100%
Hydrogen	0%	2%	47%	87%	95%	100%	100%
Lime & Gypsum	55%	52%	56%	57%	71%	96%	100%
Ammonia	41%	66%	70%	78%	92%	100%	100%
Solid Waste	0%	0%	0%	16%	33%	95%	100%
Chemicals	42%	61%	58%	64%	72%	94%	100%
Aluminum	0%	0%	18%	30%	53%	77%	100%
Total	16%	31%	48%	64 %	81%	97%	100%

Results: 618.091 Mt/yr

618.091
1874
298
54,684
\$81.46
\$58.98
\$15.63
\$6.84

Results table

		Annual Capture Amount (MTCO2/yr)										
	100	200	300	400	500	600	618.091					
# Sources	300	427	670	987	1296	1693	1874					
# Sinks	116	116	136	182	209	257	298					
Network Length (km)	6,529	5,005	9,235	14,681	26,846	43,060	54,684					
Total Cost (\$/tCO ₂)	55.03	65.53	69.04	69.41	76.19	78.88	81.46					
Source Cost (\$/tCO ₂)	38.38	53.77	55.89	56.77	58.06	58.85	58.98					
Transport Cost (\$/tCO ₂)	9.88	5.23	6.47	5.84	11.40	13.30	15.63					
Sink Cost (\$/tCO ₂)	6.77	6.53	6.67	6.80	6.74	6.73	6.84					

Key Takeaways

Sources:

- The three largest sectors by emissions (refineries, pulp & paper, ethanol) have 50% of emissions captured at 300 Mt.
- No one large-emitting sector captures all emissions, cheaply, at low-capacity goals

Pipelines:

- At low capture rates, longest pipelines due to insufficient proven storage in MN, IA, and NE.
- Large jump in pipelines required for last emitters; ~12k km from 400Mt to 500Mt; ~16k km from 500Mt to 600Mt, and 11k km for last 18Mt.

Storage:

• Average storage costs least volatile due to lowestcost formations

27

Additional study considerations

- Which industries are selected if you set a price, not a capacity, requirement?
- How do CCS costs differ by region?
- How might trunklines (centrally located pipelines with decreased costs) impact which industrial sectors use CCS?

Environmental Justice Considerations

How does CCS impact communities?

Each component can have different impacts

Emissions

• What are potential cobenefits related to capture?

Pipelines

• What are the risks and benefits related to pipelines?

Storage

• Where is storage relative to environmental justice communities?

Environmental Justice Definitions

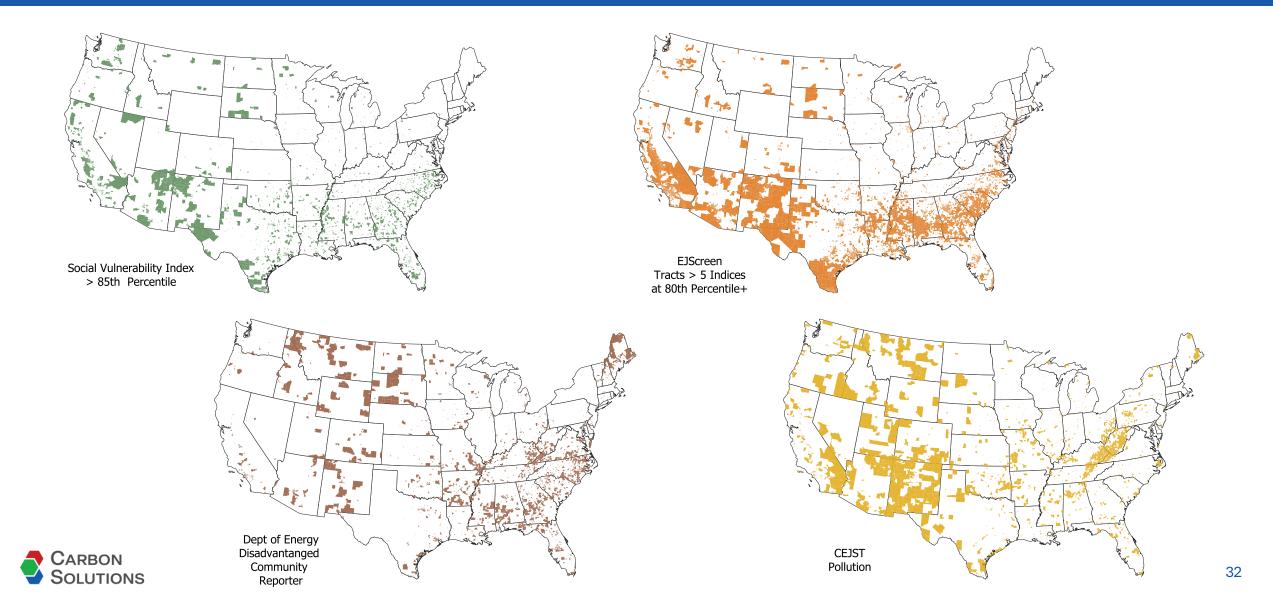
SVI (Social Vulnerability Index from Centers for Disease Control):

 A tract in the 85th percentile of the overall cumulative sum of 16 variables across four themes: Socioeconomic Status, Household Characteristics, Racial & Ethnic Minority Status, Housing Type & Transportation.

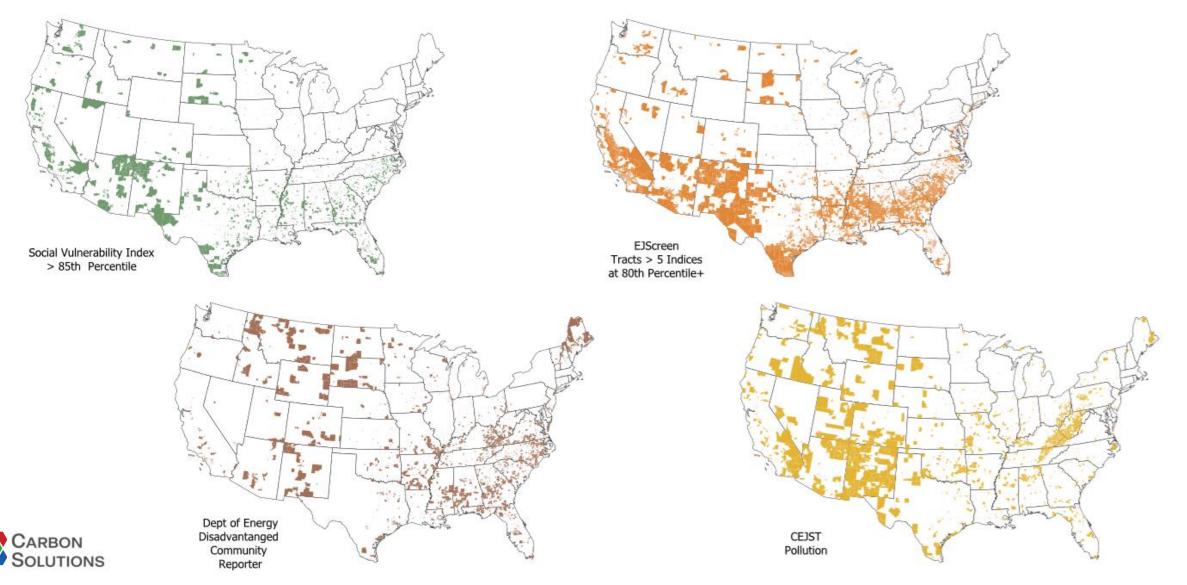
DOE-DCR (Department of Energy – Disadvantaged Community Reporter):

• A tract in the 80th national percentile of the cumulative sum of the 36 burden indicators and has at least 30% of households classified as low-income.

CEJST Pollution (Climate and Economic Justice Screening Tool - Council on Environmental Quality):


 A tract that has at least one abandoned mine land OR Formerly Used Defense Sites OR is at or above the 90th percentile for proximity to hazardous waste facilities OR proximity to Superfund sites (National Priorities List (NPL)) OR proximity to Risk Management Plan (RMP) facilities AND are at or above the 65th percentile for low income.

EJ Screen (Environmental Protection Agency:

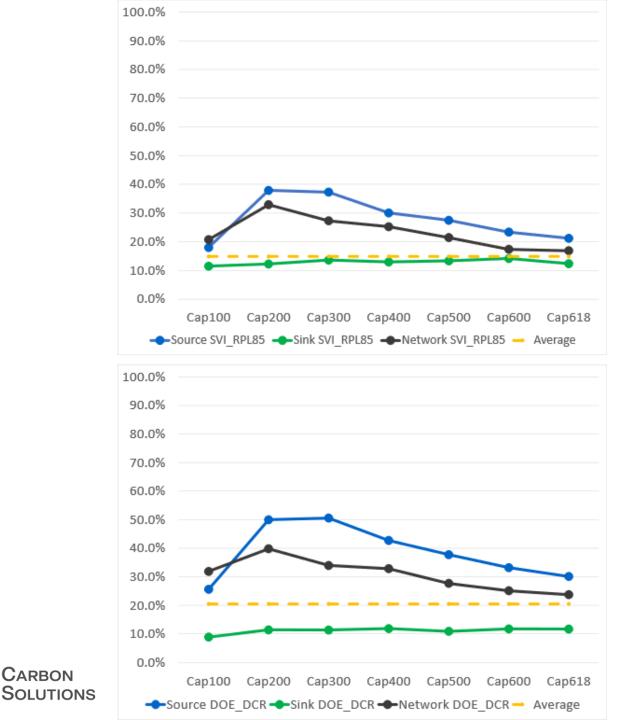

 A tract that has more than five EJ Indexes exceeding the 80th percentile AND at least one Supplemental Index exceeding the 80th percentile.

Different approaches to EJ communities

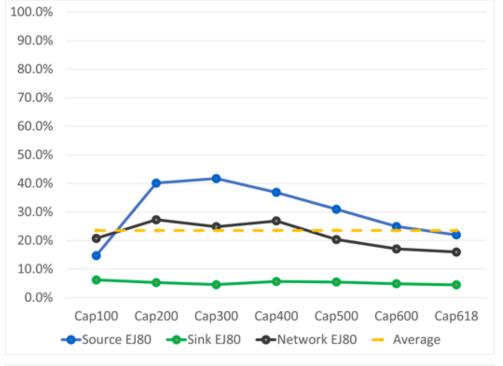
Different approaches to EJ communities

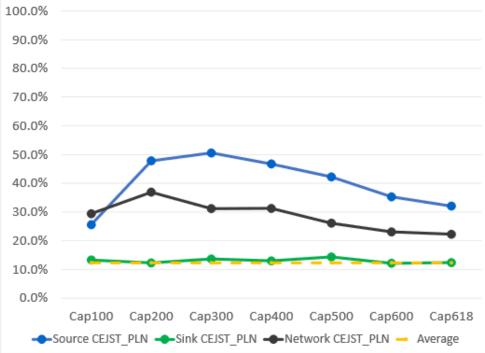
Count of Qualifying EJ Tracts

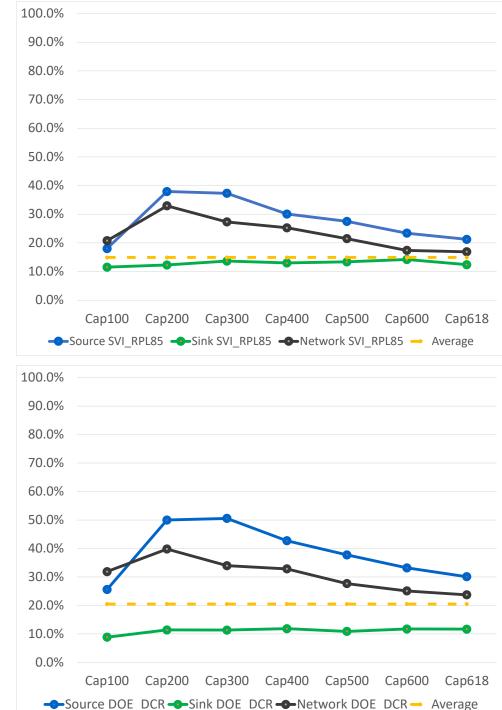
	DCR National	CEJST Pollution	EJ Screen	SVI
Count of Census Tracts	74,170	74,134	86,081	84,122
% of DAC-EJ Census Tracts (count)	20.5% (15,172)	12.3% (9,135)	23.5% (20,211)	14.9% (12,504)

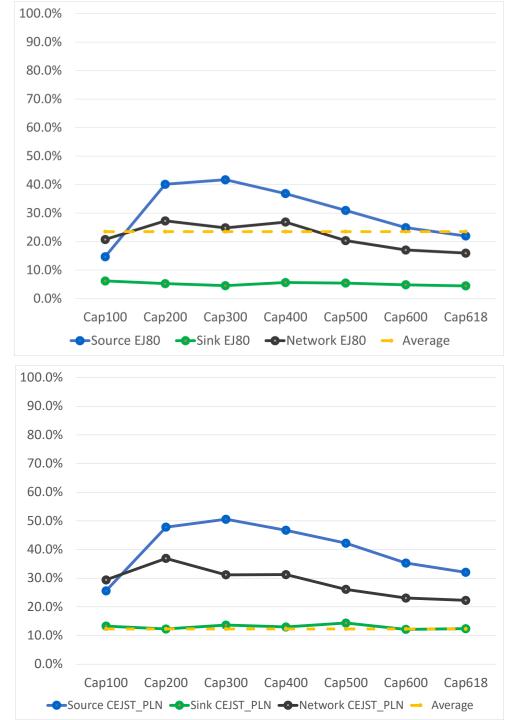


Identifying CCS Infrastructure in EJ Communities


Count of EJ tracts where x activity took place All tracts where x activity took place = % of Impacted EJ Tracts for x


Where x can be either capture, transport, or storage of CO_2





CARBON

CARBON SOLUTIONS

Key Takeaways

Defining EJ Communities

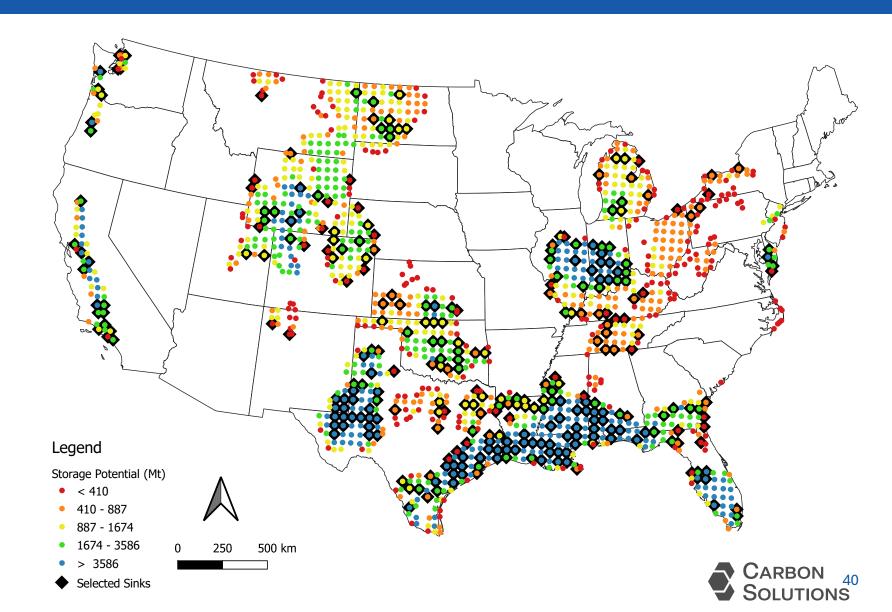
- Wide range of qualifying EJ tracts depending on definitions.
- Importance of using different definitions to better understand CCS infrastructure impact.

Capture:

• Important to understand how capturing CO₂ will impact DAC-EJ communities given that capture are in a larger percentage of these communities.

Thanks!

Full report, presentation, & webinar recording will be available on www.carbonsolutionsllc.com


Additional slides

Why are geology costs so consistently low?

Possible versus selected

- In most areas, inexpensive storage appears to be available
- What remains unclear: how first projects will impact subsequent projects

Carbon Solutions

